Tetrahedron Letters, Vol.31, No.28, pp 3991-3994, 1990 Printed in Great Britain

ON THE MECHANISM OF DEOXYGENATION OF SECONDARY ALCOHOLS BY TIN HYDRIDE REDUCTION OF METHYL XANTHATES AND OTHER THIOCARBONYL DERIVATIVES

Derek H. R. Barton, Doo Ok Jang and Joseph Cs. Jaszberenyi*

Department of Chemistry, Texas A&M University, College Station, TX 77843

Abstract. The room temperature deoxygenation of xanthates and thionocarbonates using $(n-Bu)_3Sn-H - Et_3B - air has been studied, especially with ¹¹⁹Sn N.M.R. spectroscopy. The original conception of tin radical attack on thiocarbonyl is confirmed.$

In 1984 Barker and Beckwith¹ concluded that the well-known tin hydride reduction² of the methyl xanthates of secondary alcohols to the corresponding deoxy compounds might involve tin radical attack on the -SMe function (Scheme 1), rather than the hitherto accepted attack on thiocarbonyl (Scheme 2). There have been arguments in favour of Scheme

Scheme 1

2.^{3,4} However, Forbes and Zard⁵, in a seminal contribution, have recently shown that radical λ (Scheme 1), when synthesized by irradiation of a xanthic anhydride, rapidly loses COS at room temperature. Furthermore, Oshima and his colleagues⁶ have recently shown that methyl xanthates react with (*n*-Bu)₃SnH-Et₃B at room temperature to give a smooth deoxygenation. It seemed to us that the time was ripe to investigate again the mechanism of methyl xanthate deoxygenation, especially using ¹¹⁹Sn NMR spectroscopy.

We selected three thiocarbonyl derivatives 1a, 1b and 1c for investigation, where R is the cyclododecyl residue. As expected, none of these compounds on admixture with $(n-Bu)_{3}SnH$ and Et₃B in hexane at room temperature under oxygen-free, dry argon showed any sign of reaction (IR, ¹H, ¹¹B, ¹³C, ¹¹⁹Sn NMR).⁷

Scheme 2

However, the reaction started when ethyl radical formation was induced by a controlled injection of air into the septum sealed flask.^{6,8} Methyl xanthate 1a (1 equiv.) reacted with $(n-Bu)_3SnH-Et_3B$ (1.1 equiv. each) to give at room temperature 5 (90%) and unchanged 1a (10%). Two additional products were 4a (75%) and 7a (13%).

If Scheme 1 were correct, the intermediate 3a would not exist. However, if Scheme 2 were true, then intermediate 3a should be detectable if the temperature were low enough. Variable temperature 119 Sn NMR proved to be a valuable technique for detecting 3a. At -20° the above described experiment was repeated. An intermediate was clearly observed at 66 ppm in toluene-CD₃CN (or at 60 ppm in toluene-toluene-D₈). This was formed rapidly (10 min.) or slowly (2 hr.) depending on the amount of air injected. At -20° it was stable. Warming the reaction mixture to +20° for 90 mins. caused the disappearance of the intermediate peak at 66 ppm and the development of a new peak at 83-84 ppm identical with the peak shown by an authentic specimen⁹ of 4a. Since the intermediate at -20° is stable, but changes to 4a on warming, it must be 3a. Kinetic experiments at -20° showed that the formation 3a was proportional to the disappearance of the (n-Bu) 3SnH.

We propose that the deoxygenation of 1a proceeds as in Scheme 3 with a major pathway X involving tin radicals and a minor pathway Y which uses Et radicals. The former pathway has radical 2a, intermediate 3a, and stable products 4a and 5. The minor pathway Y has radical 6a, stable product 7a and, of course, 5.

When the tin hydride is omitted, ethyl radicals are generated as before and 1a reacts by pathway Y to give 5 (62%), cyclododecene (12%), bicyclododecyl (9%) and a trace of cyclododecanone (4%). The expected ethyl derivative 7a was also formed (91%). The reaction is not as clean as the tin hydride reduction pathway X.

The analogous deoxygenation¹⁰ of thiono-carbonates 1b and 1c were also studied using ¹¹⁹Sn NMR spectroscopy. Again the (n-Bu) 3SnH - Et 3B - air system was used since it works well at -20°. At this temperature, tin

containing intermediates 3b and 3c appeared at about 66 ppm. in toluene/toluene-D. This peak increased with time. Intermediates 3b and 3c were more stable at 0° than 3a. However, they decomposed at 20° to give a singlet at 106 ppm¹¹ for 4b and 4c. On standing for several weeks both compounds gave $[(n-Bu)_3Sn]_2O$ with a peak at 82-83 ppm in agreement with an authentic specimen.¹²

In our previous studies³ of the deoxygenation reaction using methyl xanthate derivatives, we had concluded that as the temperature was lowered from about 80° the deoxygenation intermediate radicals like 2 were partitioned between fragmentation and further reduction to furnish eventually, after work-up, thiols of type RO-CH₂SH. Clearly from the work now reported, any radicals like 2 rapidly fragment and therefore the thiol reduction product must be formed by a different hydride transfer type reduction.

In agreement, when cholestanol methyl xanthate was heated under reflux with $(n-Bu)_{3}SnH$ in benzene without any initiator, the RO-CH₂SH product isolated before³ was formed (55%), along with the deoxygenated product cholestane (31%), no doubt formed by radical fragmentation.

In conclusion, this article shows that the application of ¹¹⁹Sn NMR spectroscopy solves easily a sophisticated problem in radical chemistry.¹³ Acknowledgements. We thank the N.I.H. for their support of this work. The kind help of Dr. S. Silber and Mr. J. R. Espina (in VT ¹¹⁹Sn NMR) is also acknowledged.

References and Notes

- 1. Barker, P. J.; Beckwith, A. L. J. J. Chem. Soc. Chem. Commun. 1984, 683.
- 2. Barton, D. H. R.; McCombie, S. W. J. Chem. Soc. Perkin Trans. I 1975, 1574. See Hartwig, W. Tetrahedron 1983, 39, 2609.
- 3. Barton, D. H. R.; Crich, D.; Löbberding, A.; Zard, S. Z. J. Chem. Soc. Chem. Commun. 1985, 646. Idem. Tetrahedron 1986, 42, 2329.
- 4. Bachi, M. D.; Bosch, E. J. Chem. Soc. Perkin Trans. I 1988, 1517. See also Crich, D. Tetrahedron Lett. 1988, 29, 5805.
- 5. Forbes, J. E.; Zard, S. Z. Ibid. 1989, 30, 4367.
- 6. Nozaki, K.; Oshima, K.; Utimoto, K. Ibid. 1988, 29, 6125. See also Idem Tetrahedron 1989, 45, 923; Idem Tetrahedron Lett. 1988, 29, 6127.
- 7.¹H and ¹³C NMR spectra were recorded on a Varian XL-200 NMR Spectrometer in CDCl₃ or C₆D₆ solutions at ambient temperature. (20°C). TMS was usd as an internal reference. 64 MHz ¹¹B NMR spectra were obtained using C₆H₆/C₆D₆ solutions on a Varian XL-400 NMR spectrometer, referenced to external BF₃.Et₂O (δ =0.00 ppm). The samples were prepared under dry, oxygen-free argon prior to the addition of air. The 149 MHz ¹¹⁹Sn NMR spectra were recorded on a Varian XL-400 NMR spectrometer referenced to external Me₄Sn (δ =0.00 ppm) and internal D. The 20°C experiments were run on samples dissolved in benzene/denzene-d₆ or toluene/toluene-d₈. The variable temperature measurements were done on samples dissolved in EtOH/CD₃CN, toluene/CD₃CN or toluene/toluene-d₈. (n-Bu)₃SnOSn(n-Bu)₃ at 83 ppm, n-Bu₃SnSMe at 82 ppm, (n-Bu)₃SnOPh at 106 ppm. For a collection of ¹¹⁹Sn chemical shifts, see ref. 11.
- Brown, H. C. in "Boranes in Organic Chemistry," Cornell Univ. Press, Ithaca, 1972; Brown, H. C. Midland, M. M. Angev. Chem. Intl. Ed. Engl. 1972, 11, 692; Davies, A. G.; Roberts, B. P. J. Chem. Soc. Chem. Commun, 1966, 298; Idem J. Chem. Soc. B 1967, 17. Idem, Ibid. 1969, 311. Allies, P. G.; Brindley, P. B. Ibid. 1969, 1126.
- 9. Peach, M. E. Can. J. Chem. 1968, 46, 211.
- 10. Cf. Barton, D. H. R.; Jaszberenyi, J. Cs. Tetrahedron Lett. 1989, 30, 2619.
- 11. Harris, R. K.; Mann, B. E.; Eds. "NMR and the Periodic Table", Ch. 10 p. 309, Harris, R. K.; Kennedy, J. D.; McFarlane, W. Academic Press, London, 1978 and references cited therein.
- 12. Davies, A. G.; Kleinschmidt, D. C.; Palau, R. P.; Vasishtha, S. C. J. Chem. Soc. (C) 1971, 3972.
- ¹¹⁹Sn NMR is used to solve structural and mechanistic problems in organic chemistry.
 i.e. Newcomb, M.; Horner, J. H.; Blanda, M.; Squattrito, P. J. J. Am. Chem. Soc. 1989, 111, 6294.
 Keck, G. E.; Andrus, M. B.; Castellino, S. Ibid, 1989, 111, 8136.
 Mason, J.; Ed. "Multinuclear NMR", Ch. 11, p. 305, Kennedy, J. D.; McFarlane, W. Plenum Press, New York 1987 and references cited therein.
- 14. Compound 1c gave satisfactory elemental analysis data. Its spectral properties (IR, 1 H and 13 C NMR) were in accordance with its structure.

3994

(Received in USA 28 March 1990)